We want to show that:
sin ( 3 x ) = ( 3 cos 2 ( x ) − sin 2 ( x )) sin ( x )
sin ( 3 x ) = sin ( 2 x + x )
We use the addition formula:
sin ( A + B ) = sin A cos B + cos A sin B
Let
A = 2 x , B = x
Then:
sin ( 3 x ) = sin ( 2 x + x ) = sin ( 2 x ) cos ( x ) + cos ( 2 x ) sin ( x )
sin ( 2 x ) and cos ( 2 x )
We use the known identities:
sin ( 2 x ) = 2 sin ( x ) cos ( x )
cos ( 2 x ) = cos 2 ( x ) − sin 2 ( x )
Substitute these into the equation:
sin ( 3 x ) = ( 2 sin ( x ) cos ( x )) cos ( x ) + ( cos 2 ( x ) − sin 2 ( x )) sin ( x )
3. Simplify the expression
First term:
( 2 sin ( x ) cos ( x )) cos ( x ) = 2 sin ( x ) cos 2 ( x )
Second term:
( cos 2 ( x ) − sin 2 ( x )) sin ( x ) = cos 2 ( x ) sin ( x ) − sin 3 ( x )
Add both terms:
sin ( 3 x ) = 2 sin ( x ) cos 2 ( x ) + cos 2 ( x ) sin ( x ) − sin 3 ( x )
Group terms:
= ( 2 cos 2 ( x ) + cos 2 ( x )) sin ( x ) − sin 3 ( x )
= ( 3 cos 2 ( x )) sin ( x ) − ( sin 2 ( x )) sin ( x )
= ( 3 cos 2 ( x ) − sin 2 ( x )) sin ( x )
4. Conclusion
We have now shown that:
sin ( 3 x ) = ( 3 cos 2 ( x ) − sin 2 ( x )) sin ( x )
The identity we just proved for sin ( 3 x ) is a specific case of what’s known as multiple-angle formulas in trigonometry. These formulas express sin ( n x ) and cos ( n x ) in terms of powers of sin ( x ) and cos ( x ) .
For example:
sin ( 2 x ) = 2 sin ( x ) cos ( x )
sin ( 3 x ) = 3 sin ( x ) − 4 sin 3 ( x )
cos ( 3 x ) = 4 cos 3 ( x ) − 3 cos ( x )
See: Multiple-Angle Trigonometric Formulas